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Abstract. Exact solutions of self-consistent field (SCF) equations are obtained for a class 
of coupled oscillators (CO). For some CO models the solutions localised in various domains 
of configurational space are found. These local solutions (LS) correspond to the critical 
points (CP) of SCF energy functionals of various types, e.g. local minima, saddle points 
and others which are Thom’s catastrophes. The symmetry properties of LS are discussed. 
Broken symmetry LS and a new class of LS with symmetry different from the symmetry of 
the CO Hamiltonian are also found. 

1. Introduction 

The SCF method has recently been used more frequently in calculations of wavefunctions 
and energy levels of C O .  As this method appears in practical calculations in the 
vibrational problem (Carney et al 1978, Bowman et a1 1979, Sellers 1983, Roth et a1 
1983) examination of its properties and the possibilities it provides in solving this 
problem is of importance. So far, the studies of this method were limited to numerical 
calculations of eigenfunctions and eigenenergies of CO models. Such calculations were 
performed for Barbanis (1966) and Hinon-Heiles (Hinon and Heiles 1964) models 
(Bowman 1978, Cohen et a1 1979, Gerber and Ratner 1979, Lefebvre 1983). Numerical 
analysis of these models gave information mainly on the accuracy of the SCF approxima- 
tion. However, it did not provide any profound conclusions on the qualitative character 
of this approximation. 

In this paper we propose a class of CO models relevant to the theory of molecular 
vibrations, for which we obtained exact analytical solutions of SCF equations. The 
analysis of these solutions resulted in finding certain solutions localised in different 
regions of configurational space. These regions surround the CP of the potential 
function, e.g. local minima and saddle points. 

It is well known that the solutions of SCF equations warrant stationarity of the SCF 

energy functional, i.e. SE = 0. The condition SE = 0 does not determine only the 
minima in the functional E but other CP as well. Some of the CP prove to be non-Morsian 
CP, i.e. Thom’s catastrophes. Moreover we have checked the symmetry properties of 
LS and proposed their classification. The symmetry groups GSCF, which is the reference 
one for LS classification, need not be identical with the symmetry group of the 
Hamiltonian GH. Besides broken symmetry LS for which GsCFc GH we can find LS 
for which GsCF 3 GH or GsCF f GsCFn GH # GH. The existence of LS is a very important 
fact pointing to the necessity of extending the SCF method so that it could give the 
wavefunctions with proper symmetry. 

0305-4470/85/132509+ 12%02.25 0 1985 The Institute of Physics 2509 
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2. The models of coupled oscillators 

The CO models to be studied are defined by the two-dimensional Hamiltonian: 

2 

V'(X1, x2) = a,/x:x:. 
k , l = l  

The term V ' ( x l ,  x2) can be more conveniently expressed in the matrix form: 

V'( X I ,  x2) = X T U ,  (3) 

x: = [xk, X z 1  a = [a,/].  (4) 

where 

The Hamiltonian defined in this way includes as particular cases the Barbanis Hamil- 
tonian (Barbanis 1966) with agr  = ~ i 3 ~ , , 6 ~ , , ,  the Caswell-Danos Hamiltonian (Caswell 
and Danos 1970) with u ~ ~ , S , , ,  and some others discussed in 0 5 .  

For the models defined above we find exact solutions of the SCF equations which 
allow us to analyse their properties in detail. 

3. The solutions of SCF equations 

The Hamiltonian ( l ) ,  in general, is not invariant with respect to permutation (xl, x,) H 

(x , ,  x l ) .  So we will consider the Hartree variant of the SCF method (Hartree 1928a, b). 
In this approach the approximate wavefunction is taken as 

#'scF(Xi, X 2 )  = 4sCF(X1)  4 : " " ( X 2 )  ( 5 )  

where +icF functions obey the set of equations 

( hiCF - ek)+zCF = 0 k =  1,2  

where hECF operators are of the form: 

k # 1. SCF I SCF hSkCF=hk+(+/ v 4 /  )x, 

For V' defined with equation (3) we obtain 

( + ~ C F V ' 4 ~ C F ) x ,  = xZA'~'  
where 

A( ' )  = aD(2) 

A(2) = aTD(l) 

(7) 

D ( k )  = ( # J E C F X k + E C F ) x k .  (10) 

The matrices A(k)  have not been determined so far since the explicit form of +iCF is 
not yet known. 
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The operators hSkCF can be rewritten as 

where 

Wk = (hk +2A$k))1’2 hk 

The eigenfunctions of these operators are 

4”,“‘(x&) = f n k  ( w:”(xk + dk 1) 
where fnk is the function of a harmonic oscillator with a frequency wk. 

The eigenvalues ek can now be expressed as 

Now the total energy can easily be obtained as 
S C F 2 v  S C F 2  ESCF = e1 + e2 - (I41 I ’142 I )x,,x, 

= e ,  + e 2 - ( ~ ( 1 ) ) T ~ ~ ( 2 ) .  

In order to determine Aik’ values defining the functions 4SkcF, ek and ESCF we calculate 
the integrals D‘k’:  

So, in order to find 4SCF and ESCF we finally have to solve the nonlinear algebraic 
equations (9a, b)  and (12a, b) .  For some particular cases of special interest we can 
give the solutions in the explicit form. In general, these equations can also be easily 
solved analytically with a given accuracy by iteration. 

4. Local solutions for the Barbanis model 

The Barbanis CO model is intensively used in the studies of new methods adopted for 
use in the vibrational problem (Davis and Heller 1981a, b, Maluendes et a1 1982, 
Deguhi et a1 1984). This model is defined by potential (2b) with akl = aCSk,lCSl,2. The 
equations (9a, b) and (12~1, b )  for the Barbanis CO take the form: 

for k #  1 A t )  = 0 

and 

A 2 =  - a A l / h l  

A ,  = u N ~ ( A ~ + ~ A ~ ) - ’ / ~  

where Ak = Aik) .  
From (17a, b )  we obtain 

A:(2A2+ h 2 )  = p2 
where 

p = a 2 N 2 / h l .  
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We will be interested in real solutions of equation (18) for which A 2 + 2 A 2 =  W :  is 
positive because w2 is the effective frequency of the x2 oscillator. This equation can 
have a different number of such solutions depending on the values of A 2  and P. 

Three situations are admissible which are determined by the values of the parameter 
s defined by 

s = P(3/A2)3'i. (20) 

(i) If s >  1 the solution does not exist, 
(ii) if s = 1 one solutions exists, 
(iii) if s < 1 two solutions exist. 
These solutions determine the C P  of the SCF energy functional E. In order to study 

the character of the CP let us choose a class of trial functions of the same form as (13) 
but with wk and dk dependent on A(k) treated as variational parameters. The functional 
E has the form 

E = NI w 1 + ( U : /  8A 1) + N2[ U: + U ( up - a l ) /  A I ] / 2 ~ 2  (21) 

where 

a ,  = 2A, a2 -P/A2 up E A I  A 2 /  U. 

The nature of the CP can be determined using the Hesse matrix [h,] = [ d 2 E / ~ a ,  aa,]. 
Let us calculate det h for CP: 

det h(ay, a:)= C ( l - p ( ~ ; ) - ~ )  (22) 

where C = N2/4A1a;. 
Now let us consider the case where s < 1. If we take s << 1 then we get 

a ~ ( 1 ) ~ : N 2 ( l + ~ / w : ) / w 2  

U;( 1) = W 2 (  1 - p / w : ,  

det h = C & w 2 > 0 .  

and 

4 2 )  = up 

& 2 )  = 2 P / A 2  (24) 
det h = C(l  - 9 / 8 s 2 )  <O. 

The first class of SCF solutions gives the minimum in E since (d2E/aa:)o>0,  while 
the second one determines the saddle. This is illustrated in figure l ( a ) .  

Let us note that SCF solutions corresponding to the minimum are, in reality, 
quasi-bound states since the potential V ( x , ,  x 2 )  is not bound from below and does not 
allow the bound states. However, if the local minimum in V ( x , ,  x 2 )  is deep enough 
then the quasi-bound states corresponding to the minimum in E are sharply localised 
in the vicinity of ( x y ,  x,") = (0,O) and in consequence have a well defined energy. 

The potential V ( x , ,  x 2 )  has also two saddle points ( x s ,  x s )  = ( - A 2 / 2 a ,  * I W ~ W ~ / ~ ~ ' ~ U )  
which separate the minimum (xf", x,") from the region where V ( x , ,  x 2 )  can take 
arbitrary negative values (see figure 2). The potential barrier V, defined as 

v,= V(XS,  x ; )  - vcxf",  x,") = (Wlxs)2/2 (25) 
is high enough for a << 1 to enable the localisation of the quasi-bound states. 
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0.2 0 6  1 0  1.4 1 8  

a1 

0 2  0 6  1 0  1.4 1 8  

a1 

Figure 1. ( a )  The saddle and minimum in the SCF energy functional for the ground state 
of the Barbanis C O .  wI = w2 = 1 and a = 0.58. ( b )  The critical point A4 in the SCF energy 
functional for the ground state of the Barbanis C O .  w1 = w2 and a = 0.62. 

Their energies are given by 

Er;?,n*=W*(N1 - N2P/2d)+w2N2.  (26 )  

The saddle solutions are localised in the vicinity of (xs, xs) because they are represented 
by displaced harmonic oscillator functions (see equation (13)) with ds = -xs. 

These SCF wavefunctions are much diffused because w:=2P/A2 is very small for 
a << 1 (s  << 1) and their energies 

E ~ , , n 2 = ~ 1 N , + ~ : N 2 +  V, (27)  
are greater than the height of the potential barrier. Thus these solutions can be 
interpreted as resonances. 

It is clearly understandable that with s varying from 0 to 1 the minimum and the 
saddle approach each other and become CP of a new type. Let us consider the case 
s = 1, for which 

ay = 2aJ3 a: = 3-’I2w2 det h = O  (28) 



2514 J Makarewicz 

4 
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-4 -2 0 2 4 

x2 

Figure 2. The contours of the potential for the Barbanis CO. U ,  = w2 = 1 and a = U.25. 

and 

Et,,,,= w l N 1 + 3 a : N 2 / 2 .  (29)  

We deal here with non-Morsian CP (Poston and Steward 1978) because the Hesse 
matrix has one zero eigenvalue. The functional E depends on three parameters so the 
CP defined by equations (28) determines Thom’s catastrophe C ( 1 , 3 )  (Thom 1974), 
called A, (Gilmore 1981). This CP is unstable because an arbitrary small change in 
the s parameter annihilates (s > 1 )  or spilits ( s  < 1) & into the minimum and the 
saddle. The character of & is illustrated in figure 1( b ) .  

5. Local solutions for the CO with double well potential 

CO models with double well potentials are frequently used in the description of inversion 
and ring-puckering molecular vibrations (Lister et a1 1978). 

Let us consider a CO model of such a kind taking into account the Hamiltonian ( 1 ) :  

a i , ,  = a 2 0 a2,2 = b / 2  3 0 

akf = 0 for other indices k and 1. 
Now, equations ( 9 4  b )  and (12a, b )  are 

and 

w ; = h k + b ( d : +  N f / w f )  

where 

k #  I =  1 , 2 .  

For arbitrary values of the model parameters W k ,  a and b the solution ( d l ,  d2 )  = 0 of 
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equation (30)  does exist. We also see that if for some wk, a, b the solution (d: ' ) ,  d y ) )  Z 0 
does exist then another solution (d',2', d$") = -(dil l ,  d y ) )  will exist. 

In order to simplify further discussion let us consider the case when W k  = 0. Then 
for ( d l ,  d2)  = 0 we obtain 

wk = (bN: /  Nk) 'I3 (32) 

and for ( d l ,  d2)  # 0 

where 

r = ( bZ N 1  Nz/  a3)'". ( 3 5 )  

Real solutions (34) exist for r s 1 and do not exist for r > 1 .  
In order to understand the character of the solutions obtained let us consider the 

shape of the potential function V ( x , , x , ) .  It has two local minima ( x y , x y ) =  
(*(a /b) ' / ' ,  T ( a / b ) ' / ' )  and one saddle point (xs, x f )  = (0,O). The height of the poten- 
tial barrier vb separating the two minima 

vb= a z / 2 b  

determines the character of the SCF solutions. If vb is high ( r  < 1 )  then two equivalent 
LS are localised in two equivalent potential wells. For r >  1 this barrier 

V b < ( N l N z a / 4 ) ' / 2  

is not high enough to enable localisation of the SCF wavefunctions around the minima 
( x f " , x y ) .  Thus, only one class of SCF solutions defined by equation (32) localised 
near the saddle (xs, xs) exist. 

The analysis of the SCF energy functional 

E = f( w1 N 1  + wzNz) + a d l d z + f 6 (  d:+ N l /  w l ) (  d :  + N2/ w2)  (36) 

with the variational parameters dk and wk proves that LS defined by ( 3 3 )  and (34) for 
r < 1 determine the minima in E. 

The LS with dk=O can be of a different nature depending on the value of the 
parameter r because the Hessian depend on r: 

det h(dk = 0) = 12( bN, Nz)z(2w1 w ~ ) - ~ (  rz - 1). (37) 

As follows for r < 1 we have det h < 0. This means that LS(S) defined by ( 3 2 )  determines 
the saddle in E. For r > 1 this LS determines one minimum in E. For r = 1 det h = 0 
and the Hesse matrix has one zero eigenvalue. Thus, the CP for r = 1 is a catastrophe 
C( 1 , 2 )  (we have two parameters a and b )  called A3. This CP is unstable because under 
arbitrary variation of r it is transformed into the minimum (if r >  1) or is split into 
the saddle and two equivalent minima (if r < 1 ) .  

6. Symmetry of the local solutions 

The SCF solutions can have a symmetry lower than that of the exact wavefunctions. 
This phenomenon, called symmetry breaking, has been found for atoms ( h a t  1972, 



2516 J Makarewicz 

Delgado-Barrio and Pratt 1975) and diatomic homonuclear molecules (Bagus and 
Schaefer 1972; for references on this, see Ficker 1984). 

For our CO models we have found LS of broken symmetry but also LS of a new 
kind. The simplicity of the CO models allows a straightforward analysis of the symmetry 
properties of LS. The results of the analysis do not refer only to the models considered 
but are relevant for general considerations. 

In analysing the symmetry of LS we shall begin with the question: why do LS 

appear? On the grounds of the examples considered it is easy to see that the reason 
for the appearance of LS are local CP such as local minima and saddle points found 
in a multi-dimensional potential of the system in question. 

This fact provides an explanation of why different LS have different symmetry 
properties. The symmetry of LS is closely related to the local symmetry of the potential 
in the vicinity of a given CP. We will refer to this symmetry as the local symmetry of 
CP. As an example let us consider the following potential: 

~ ( x , ,  x2) =&(o ,x , )~+  ( w ~ x ~ ) ~ +  b ( x , ~ ~ ) ~ ] + a x , x ~ +  c,x:+ c2x:. (38) 

It follows that the local symmetry of the saddle S is different from that of the minima 
MI and M2, which is shown by the contours of the potential in figure 3. The notion 
'local symmetry of a CP' or 'local symmetry group of a CP: GL(cP)' is so important to 
us that we think it relevant to give its strict definition: GL(cP) is a group of all operations 
with respect to which both CP and V(x,, x2, .  . . , x,) are invariant. 

Let us, for example, consider the local symmetry of CP for the potential (38). 
For a Z 0 we have GL(M1) = G,(M2) = C, = {E} where E is the identity and GL(S) = 

GH=Ci={E, i}  where i:(x1,x2)-(-xI, -x2). 

and GL( S )  2 G2" = {E, i, ad, ab} ( 3 stands for isomorphism). 
ForWk=Ck=OwehaveG,(M,)=GL(M2)=C,={E, ad}wheread: (Xi, X2)H(X2, X i )  

1 I L 1 
- 4  - 2  0 2 4 

X ,  

Figure 3. The contours V =  -2 of the potentials V ( x , ,  x,) (full curves) and FcF(M,)  
(broken curves). The potential V ( x , ,  x,) with the parameters w ,  = 0.4, w2 = 0.8615, a = 4, 
b = 2 and ck = 0 has two minima: M, = (xy, x y )  = (1.984, -0.921) and M,= -M\.  The 
parameters of the local FcF(M,, , )  potentials for the ground state are the following: 
w ,  = 1.6, w, = 2.5, d ,  = k1.5625 and d2 = 71. 
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The local symmetry of a CP determines the symmetry properties of the effective 
potential vScF = x k  vECF(xk). This potential is obtained by the averaging of v with 
the SCF wavefunction. As a result of this averaging procedure we obtain the local SCF 

potential whose symmetry depends on GL(cp). As LS(CP) has large values only near 
C P  it does not introduce a large contribution to the local VscF potential from domains 
of configurational space far from the CP. This means that VscF can have a symmetry 
other than GL(cp). 

For example, let us consider the symmetry of VscF potentials for V ( x l ,  x2)  defined 
by (38) .  These potentials are as follows: 

2VSCF(Xl,  X 2 ) =  2 [W~(Xk+dk)2+2ckx4k] 
k = l  

and the symmetry group of VscF is a direct product 

G s C F  = GI 0 G2. 

For minima dk # 0 and we have Gk = Cik)  = { E ,  d k ) }  for ck = 0 and Gk = C ,  for ck f 0. 
Thus, there are three cases: 

(i) GscF = cl @ C I =  c1 for ck  # 0 
(ii) G ~ , ~ = C , O C ~ ~ ’ ~ ~  c:’)@c~=c, for c k = o  and C , # O ,  k # I = 1 , 2  
(iii) G s c F = C ~ 1 ) @ C ~ 2 ) ~ C  2v for c k  = 0. 

For saddle dk = 0 and we have Gk = Clk’; as a consequence 

GsCF = C:”@ Cb2) C 2v for arbitrary values of ck.  

We See that G S C F ( M k )  GSCF(S) Only for Ck = 0. 
This example has revealed some general facts, meaning that the following 

possibilities exist: 

(i> GSCFCGH 
(ii) G S C F ~ G H  
(iii) neither (i)  nor (ii) does occur but G s C p f  GH. 

In the last case it is convenient to define a group G ,  = GsCF A GH which is a measure 
of the similarity between the groups G s C F  and GH as it includes the common elements 
of these groups. For example, if c, = 0 then 

G s c d M k )  =c$t) 
but 

GH=C,stC$k,’ 
and 

G,= C s n  C$k,)= C ,  

which means that although GsCF is wider than GH these groups do not have any 
common elements, except the identity E. 

For c k  = 0 and b = 0 (harmonic CO) we have 

GSCF= C d x )  = {E, ~ 4 x 1 ) ~  d x 2 ) ,  i> where U ( & )  

but 

GH = C2v(q) = {E, g(q l ) ,  ~ ( 4 2 ) ,  i> where (T( qk) : qk H -qk 
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where qk are the normal coordinates for the quadratic form: 

( w I x d 2 +  (w2x2)2+2ax1x2 = (Rlq1)’+ (R2qd2. 

In this case 

Gc = C,v(x) n C2v(q) = Ci. 

To lay down the rules for the classification of various kinds of LS symmetries we shall 
consider the action of the GH group on LS in order to find the behaviour of LS with 
respect to true symmetry operations. For the sake of simplicity we shall first consider 
only nodeless LS. 

The elements of G, fall into two sets: those which leave a given LS(CP) invariant- 
they form the so-called little group (Altmann 1977), and those which transform LS(CP) 

into different functions. The set {g LS(CP) where g E GH} is called the orbit of LS(CP) 
(Michel 1980) denoted here by GH[~s(cp)].  For example, let us consider the LS for 
V ( x , ,  x2 )  presented in figure 3. It is easy to find the little group of Ls(Mk): it is C,. 
The little group of LS(S) is GH. The orbit G H [ ~ s ( M k ) ]  includes all LS corresponding 
to the equivalent minima, i.e. GH[~s (MI) ]  = GH[LS(M2)] = {LS(M~),  LS(M~)}. The orbit 
of LS(S) is LS(S) itself. 

The interesting case is a harmonic CO for which the little group of LS is Ci being 
a proper subgroup of GH = C2,(q) .  It is easy to prove that in this case the orbit G H [ ~ s ]  
includes new functions fk = U(+)  LS which are not the SCF solutions. 

Thus, we have found three types of LS distinguished by a different behaviour under 
action of the G H  group: 

(i)  the orbit of L s ( c P k )  includes all other {LS(CP,)} corresponding to the equivalent 

(ii) the orbit of L s ( c P k )  contains only this L s ( c P k )  (isolated LS), 

(iii) the orbit of L s ( c P k )  includes the functions which are not solutions of the SCF 
equations. 

The symmetry properties of LS are closely related to the properties of the groups 
GsCF and GL which are illustrated in table 1, presenting a classification of various 
kinds of LS symmetries. In the above considerations we took into account only the 
nodeless L s ( c P k )  which are invariant under the action of the GSCF(cPk) group. In 

{CPJ, 

Table 1. Classification of symmetry properties of local SCF solutions. 

Number Symmetry Orbit of LS(CP) 

1 Properly 
broken 

2 Not properly 
broken 

Locally 
smoothed 
Invariantly 
smoothed 
True 

The orbit contains all 
equivalent LS(CP’) where 

The orbit contains functions 
g LS(CP) which are not the 
SCF solutions 
The orbit contains ail 
equivalent LS(CP’) 
LS(CP) is isolated 

CP‘ = g CP 

LS(CP) is isolated 

t G # G’ means G e  G’ and G P G .  
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general L s ( c P k )  is transformed by GSCF(CPk) according to its irreducible representa- 
tions. In this regard the abbreviation Ls(cPk)  in table 1 denotes invariant with respect 
to GSCF(CPk) action the set: {Ls(cPk) and their partners obtained by the action of 
GscdCPk) on Ls(cpk)}. 

The results of our analysis prove undoubtedly that the SCF method gives approximate 
wavefunctions with good symmetry properties only in some particular cases (see, for 
example, LS for the Barbanis CO). Up till now LS with broken symmetry have been 
treated as exceptional phenomena as the iteration procedure of solving SCF equations 
has not allowed us to obtain any LS with a symmetry different from that of the symmetry 
of the LS taken in the first step of this procedure. In general, the symmetry initially 
guessed was GsCF = GH and this symmetry was preserved during the iterative process. 

The corrections to SCF wavefunctions required to calculate the correlation energy 
are introduced through the configuration interaction (CI) procedure which is based on 
the expansion of wavefunctions into SCF solutions corresponding to the CP considered. 
In the case when the SCF energy functional has various kinds of CP the CI procedure 
will be ineffective as the CI  expansion must have been very large in order to provide 
the correct properties of wavefunctions in the whole configurational space. 

Let us, for example, take Ls(Mk) with a broken symmetry (GSCFC GH) as a basis 
of C I  expansion. Obviously, in CI  expansion we must use the SCF wavefunctions of 
Ls(Mk) type with large quantum numbers so that they would cover the region of all 
equivalent minima {Mi}. 

If the isolated LS with invariantly smoothed symmetry are taken as the CI basis 
then a sufficiently large CI  expansion must be used in order to obtain the wavefunctions 
with correct symmetry. In such a case it is more reasonable to include in the CI 
expansion the LS corresponding to other CP. 

At this point it becomes clear that the CI  method should be extended as the correct 
expansion of wavefunctions must include whole orbits of LS. 

7. Summary 

We have examined a class of CO models relevant to the theory of molecular vibrations, 
for which we have obtained exact solutions of SCF equations. 

If the multi-dimensional potentials of CO have CP, e.g. minima and saddles, then 
the SCF equations were proved to give LS localised in certain regions of the configur- 
ational space and these regions were shown to lie in the vicinity of the CP of the potential. 

LS realise CP of the SCF energy functional. These CP must not necessarily be the 
minima; they can be of other kinds. Some of these CP are found to be Thom’s 
catastrophes and this fact is of great importance. This means that SCF solutions can 
change their properties in jumps accompanying the smooth changes in potential 
parameters. The exact wavefunctions can undergo similar changes as well. This 
problem will be considered in a separate paper. 

In general, the symmetry of LS is different from that of the exact wavefunctions. 
We gave a classification of the kinds of LS symmetries. Our classification is based on 
two groups: GscF(CP)-the symmetry group of the local VScF(cp) potential, and 
G,(cP)-the symmetry group of the local CP of the potential. These two groups 
determine the behaviour of LS under the action of the GH group on LS. 

The existence of LS of various kinds points to the necessity of extending the SCF 

method so that it would give the solutions with correct symmetry. If the wavefunctions 



2520 J Makarewicz 

are presented as the expansions into an SCF basis, this basis should include: 

solutions, 

orbit are not SCF solutions, 

(i) all LS comprised in a given orbit if those are properly broken or locally smoothed 

(ii) LS and its orbit if the LS is unproperly broken, although the elements of this 

(iii) the orbit of a given LS as well as the other orbits if the LS is isolated. 
A modification of SCF equations is possible so that they would give solutions of 

the correct symmetry. The modification will be presented in a separate paper. 
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